1005 Number Sequence
Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A f(n - 1) + B f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3
1 2 10
0 0 0
Sample Output
2
5
Solution:
这题还没有过.
递归法
先根据给出的公式, 实现了一种递归的写法, 但是MLE了, 栈溢出了吧。
int f(int n, int a, int b) {
if (n == 1 || n == 2) return 1;
return (a * f(n-1, a, b) + b * f(n-2, a, b)) % 7;
}
int main() {
int a, b, n;
while (scanf("%d %d %d", &a, &b, &n) != EOF && a && b && n) {
printf("%d\n", f(n, a, b));
}
return 0;
}
// MLE
迭代法
改成另外一种迭代法, 虽然不会造成栈溢出, 但TLE, 因为题目中1 <= n <= 100,000,000
, 肯定会超时.
int main() {
int a, b, n;
while (scanf("%d %d %d", &a, &b, &n) != EOF && a && b && n) {
long long int fa = 1; // f2
long long int fb = (a+b) % 7; // f3
long long int ft = 0;
int k = n - 3;
while (k--) {
ft = fb;
fb = (a*fb + b*fa) % 7;
fa = ft;
}
printf("%lld\n", fb);
}
return 0;
}
打表法
打表, 求余; 还不是很理解.
1, 因为余数是7, f(n)在0~6之间, 根据f(1), f(2)知道, 重新回到1, 1说明是一个周期, 所以两两配对, 一个7个数据, 49种可能.
2, 既然是49种可能, 那么n % 49的余数肯定小于49, 所以利用for循环, 将f(n)的数据都存入seq数组中, 复杂度很低.
|
最后一种, 参考: https://blog.csdn.net/w_linux/article/details/75449891